' AT

AN — N—

SEATTLE 2019

Modern Binary Analysis

with ILs

PETER LAFOSSE
JORDAN WIENS

Us

PETER LAFOSSE JORDAN WIENS ;

*Founder, Vector 35 *Founder, Vector 35

INARY

*Former: Head of Vulnerability *Former: network security engineer,
Research at Raytheon SIGovs incident responder, reverse
engineer, vulnerability researcher,

*Current: Project Manager and
CTF player

developer of Binary Ninja and
reverse engineer *Current: a hacker learning to dev

\Vr @

VECTOR 35 BINARY NINJA

Clarify: We are NOT academic researchers who have studied intermediate language
and compiler design. This is not meant as a slight by any stretch — we are merely
acknowledging our own bias as we come at this from the perspective of practioners
who try to learn from research what we can but realize we don’t know everything
coming out of the research community.

You?

Done binary reverse engineering

Used a decompiler

Written code to automate RE

Used an IL or IR for RE

Used an IL or IR for compilation or other task

Published research leveraging ILs

To better help us understand our audience, we’d love to get a feel for the room so we
can know how much time to spend on each section. It also makes sure everyone is

awake since | know we’re almost done with the conference, you just need to stay
alert for a few more hours!

So first, everyone in the audience put your hand up to make sure you’re awake.
Next, keep your hands up if you have done binary reverse engineering

Outline

What is Binary Analysis

Why ILs
IL overview

DEMOs

Justification — WHY you should be using Intermediate Languages

Introduction — Showing examples used in reverse engineering and the differences
between them

Working with ILs — Some notes on how to best leverage ILs

DEMOs -- showing how to solve some common reverse engineering problems using
ILs instead of raw assembly

What?

WHAT IS BINARY ANALYSIS?

Compilation

Source Machine

Very brief reminder from your introduction to compilers class.

Decompilation/Lifting

-

e no_vnu; !

J_l ;

m

EVEN LIFT?

Lifting Is another

Static vs Dynamic

Many tradeoffs

Focus on Static

For the purposes of this talk we are going to stick with Static Binary Analysis

Binary Analysis = Source Analysis

All we have to do is decompile the binary... Right?

10

Binary Analysisd

All we hay do is

2 Analysis

ile the iry... Right?

11

Compilers mess everything up

Register Allocation
Function Calling Conventions
Variable and Function Names

Types

How Code generation works and why it makes Binary Analysis hard
Mapping between “infinite” set of variables, and finite set of registers
Process called “register allocation”
What happens when you have more variables than available registers?
Variables get “Spilled” on to the stack.
Function calls need to be made concrete.
Set of parameters being passed to a function need to be placed in
specific registers
(or on the stack) given a predetermined “calling convention”
Variable and Functions Names are discarded
Types are discarded
There aren’t special instructions that let you know you’re working with
a given type
This has to be determined indirectly
“Automatic structure/array recovery” is not a genericlly solvable
problem

12

Compilers mess everything up

Register Allocation

Function Calling Conventions
b " :

Fpes

How Code generation works and why it makes Binary Analysis hard

Mapping between “infinite” set of variables, and finite set of registers

Process called “register allocation”

What happens when you have more variables than available registers?

Variables get “Spilled” on to the stack.

Function calls need to be made concrete.

Set of parameters being passed to a function need to be placed in specific registers
(or on the stack) given a predetermined “calling convention”

Types are discarded

There aren’t special instructions that let you know you’re working with a given type

This has to be determined indirectly
“Automatic structure/array recovery” is not a generally solvable problem

13

Undecidable Problems

Where are all the...
functions?
strings?

pointers?

To those not familiar:
“an undecidable problem is a problem that requires a yes/no answer, but where

there cannot possibly be any computer program that always gives the correct
answer”

14

Unique Failure conditions

Stack variable resolution fails
Parameter resolution fails
Switch resolution fails

Misidentification of functions

These undecidable problems lead to a set of failure conditions unique to static Binary
Analysis

Thus you need to plan for dealing with issues like

Stack variables can’t be resolved

Parameters can’t be determined

Indirect switch targets fail to be determined

False positive or false negative during Function identification

Reason discuss difficulties understand -> differences between Source & Binary

Unique requirements which need to be taken into account

15

Why?

WHY ILS?

16

Before we begin

IL- IR

Before begin, we wanted to have a quick note on the differences between an
intermediate language and intermediate representation. They’re often used
interchangeably but there’s one distinction that sometimes is important. An
intermediate representation is not necessarily code. For example, you might choose
to represent the data flows throughout a program via a graph showing sources and
sinks. That would be an IR, but NOT an IL.

That said, we (well, Jordan in particular) has a bad habit of using the terms
interchangeable so don’t be surprised if we use them that way during this talk)

17

Intermediate Language (IL)
Intermediate Representation (IR)

Bitcode

Virtual Machine Opcodes
P-Code

There are many different related terms for IRs or ILs. IR and IL are usually used
interchangeably

P-Code is both the name of a specific implementation of an IL as well as a generic
name for a portable machine code, another synonym for ILs.

18

Premise
Reverse Engineering is fundamental to understanding how
software works.

Intermediate Languages are fundamental to modern
compiler design.

Intermediate Languages should, therefore, be fundamental
to how reverse engineering works.

Intermediate Languages represent a mid-point between many modern source code

languages and many modern architecutres, allowing optimizations and analysis to be
shared amongst platforms.

19

Smaller Instruction Set

Instruction Set Number of instructions
P-Code (Ghidra) 62

Microcode (IDA) 72

RISC-V 72

LLIL (Binary Ninja)

MIPS

ARMv7

X86/x64

Given the option, would you want to write code that had to handle 1000 different
unique instructions, or 1007? It’s worth noting that there’s a LOT of ways you could
change these numbers. X64 alone could be as many as almost 4000 instructions if
you

Data sources available from: https://docs.google.com/spreadsheets/d/15-GIRhASzk-
12vzqjlJs9brl-kkwohYdeg5-voMQS3o/edit?usp=sharing

20

Architecture Agnostic

x86/x64
aarch64
armv/
ppc
mips
msp430
atmel

21

More robust, faster, easier

THE DISASSEMBLY WAY THE IL WAY

for index, item in enumerate(ins):
count = @

if 'svc' in ''.join(map(str, for 1 in mlil_instructions:
ins[index])):
. . . if i.operation == MLIL_SYSCALL:
for iter in ins[index-1]:
S R — syscallNum = i.params[0].value

print "syscall: %s @ func:
%s " % (iter, func)

count += 1

Taken from: http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Note that the assembly code is significantly more brittle, it will stop working if the
compiler ever created even a slightly modified sequence of instructions such as re-
using an existing constant value from another register, assigning to x8 anywhere
except the prior instruction, etc. So not only is the IL implementation easier to write,
but it’s more robust, requires you to know less about the specific platform
implementation, but it will also work out of the box with multiple architectures.

23

http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

More robust, faster, easier

THE DISASSEMBLY WAY THE IL WAY

for index, item in enumerate(ins):
count = @

if 'svc' in ''.join(map(str, for 1 in mlil_instructions:
ins[index])):
. . . if i.operation == MLIL_SYSCALL:
for iter in ins[index-1]:
S R — syscallNum = i.params[0].value

print "syscall: %s @ func:
%s " % (iter, func)

count += 1

Taken from: http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Note that the assembly code is significantly more brittle, it will stop working if the
compiler ever created even a slightly modified sequence of instructions such as re-
using an existing constant value from another register, assigning to x8 anywhere
except the prior instruction, etc. So not only is the IL implementation easier to write,
but it’s more robust, requires you to know less about the specific platform
implementation, but it will also work out of the box with multiple architectures.

24

http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

More robust, faster, easier

THE DISASSEMBLY WAY THE IL WAY

for index, item in enumerate(ins):
count = @

if 'svc' in ''.join(map(str, for 1 in mlil_instructions:
ins[index])):
. o . if i.operation == MLIL_SYSCALL:
for iter in ins[index-1]:
if count == 5: syscallNum = i.params[0].value

print "syscall: %s @ func:
%s " % (iter, func)

count += 1

Taken from: http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Note that the assembly code is significantly more brittle, it will stop working if the
compiler ever created even a slightly modified sequence of instructions such as re-
using an existing constant value from another register, assigning to x8 anywhere
except the prior instruction, etc. So not only is the IL implementation easier to write,
but it’s more robust, requires you to know less about the specific platform
implementation, but it will also work out of the box with multiple architectures.

25

http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Why not a decompiler?

Missing compound types thwarts analysis

Abstractions increase errors in translations

Decompile so we can analyze with existing source analysis tools.
Existing source analysis tools don’t work well on “just a bunch of pointers”

26

Why not C?

Stack layout
Variable aliasing

Semantic bindings between variables

People think Cis the ultimate goal of decompilation.

Many things that can be recovered from the binary don’t have C-language constructs

27

IL Overview

OR: TOO MANY SE&REFS-INTERMEDIATE LANGUAGES

28

Tradeoffs

Verbose

Simplified
instruction set

Easy to parse

Concise (readable)

Explicit
instructions

Easy to lift

29

Tradeoffs Pt 2.

Explicit flags

Can adapt to
problematic
architectures

Deferred flags

Much easier to lift

30

Verbose, Simple Instructions

test eax,

REIL Zynamics

€ax

00000000.00
00000000.01
00000000. 02
00000000.03
00000000. 04
00000000. 05
00000000. 06
00000000.07
00000000. 08
00000000.09
00000000. 0a
00000000.0b
00000000.0c
00000000. 0d
00000000. 0e
00000000.0f
00000000.10
00000000.11
00000000.12
00000000.13
00000000.14
00000000. 15
00000000.16
00000000.17
00000000.18

STR
STR
AND
SHR
SHR
XOR
SHR
SHR
XOR
XOR
SHR
SHR
XOR
SHR
XOR
XOR
XOR
AND
NOT
STR

EQ V_0

>
b=
w

N

LR Pt iy oy
= 00 00 00 090 00 00 00 00 00 00 09 00 00 00 00 W~

1

OV GO N b D bt B U b N b S

S s s s s<<ON
A et b

o N

I

S an
=38

N - A)

©
=
w
N

% e oo o o~ oo by <
N<xER<<<eR<<®<<> |
Yo
o

IS S el v el
L=~ _1_~1_1l
e ee o<
Q<SSP <SL<<au<WHI
et 1 e 0 1 00 0D D00 M
0~ b4 .
o o

=Pl
-

o

o

BW e
et ot}
1
waw
©w o

|
-

o

, R_AF:
32, 0:32, R_ZF:1

SHR V_00:32, 1f:32, V_17:32
AND 1332, V_17:32, V_18:32
EQ 1:32, V_18:32, R_SF:1
817 TRIOR:T

STR

31

BN LLIL

Concise, Many Instructions

x87.push{x87c1z}(float.t(1))

32

Landscape of ILs

Just ones relevant to security/RE/binary lifting. The following slides are not meant to
be read, they’re really just to emphasize that there are far too many options in this
space.

33

Project URL

BAP httos://eithub.com/BinarvAnalysisPlatform/bap

Binary Ninja htto://docs binarvninia/dev/bnil JliLbtm

Boogie httos:/fwww microsoft.com/en -us/research/proiect/boogie-andintermediate -verification danguase/

Amoco https://github.com/bdcht/amoco/blob/release/amoco/cas/expressions.py
BINSEC https://link.springer.com/chapter/10.1007%2F978-3-662-46681-0 17
Radare https://github.com/radare/radare2/wiki/ESIL

Falcon hitps://eithyt /falconre/fa
Falker* httos://eamozolabs github jo

GDSL https://github.com/gdslang/gds|-toolkit

JEB https://www.pnfsoftware.com/blog/jeb-native -pipeline-intermediate -representation/
B2R2 https://github.com/B2R2 -org/B2R2

Miasm hitps-/feithub com/ceasec/miasm

Microcode Hex-Rays https-//hexrays com/araducts/ida/supnart/pnt/recon2018 pot

Microcode Insight

P-Code GHIDRA http-//ehidra refcoursps/languages/htmi/peaderef html

BinNavi https /v 2ynamics com/binnavi/manual/htmi/reil_language htm

Bindead
Jakstab

CodeSonar and others http://pages cs wise edu/~rens/pastresparch htmISTSI_averview

EiNSTeiN- https-/feithub com/FINSTeiN-/decompiler/tree /master/secfic

Valgrind https://eithub com/smoparkes/valerind -vex/blob/master/pub/libvex_irh
BitBlaze /]

| don’t expect anyone to read this now and I’'m not going to cover all of these since
there’s a ton. Heck, there’s even several with the same name! And these are just the
ones that have been used for security analysis or reverse engineering. There are
probably hundreds of total intermediate languages in total, with more growing by the
minute.

RAW data (comments welcome)
https://docs.google.com/spreadsheets/d/1XPTe5sj1Vx9040HuKLadU-
pwit91Hzk YdrV8wcFIIQ

34

https://docs.google.com/spreadsheets/d/1XPTe5sj1Vx9O40HuKLadU-pwit91Hzk_YdrV8wcFllQ

LLVM IR

Name Project URL

LLVM IR LLVM http://llvm.org/docs/LangRef.html

allin allin http://sdasgup3.web.engr.illinois.edu/Document/allin_poster.pdf
bin2llvm S2E https://github.com/cojocar/bin2llvm

Dagger Dagger https://github.com/repzret/dagger

fed fed https://github.com/zneak/fcd

Fracture™ Fracture™ https://github.com/draperlaboratory/fracture

libbeauty https://github.com/jcdutton/reference
mctoll https://github.com/microsoft/llvm-mctoll
McSema https://github.com/trailofbits/mcsema
reopt https://github.com/Galoisinc/reopt

RetDec https://github.com/avast/retdec
revng https://github.com/revng/revn

And then there’s the entire family of systems that just translate to LLVM IR.
Sometimes the goal is to just re-emit the binary for a different architecture, but given
the prevalence of a number of LLVM IR security analysis passes, that’s often a
common reason as well.

A great overview table is maintained by Trail of Bits on their McSemo project page:
https://github.com/trailofbits/mcsema#tcomparison-with-other-machine-code-to-
llvm-bitcode-lifters

https://github.com/trailofbits/mcsema

Landscape

nl o epqe

ALY BINARY NINJA

36

Landscape: LLVM IR

PROS

Leverages existing compiler
infrastructure

Many analysis passes
Existing community

Trivial to re-emit to native

CONS

Difficult to single-shot lift from
binary

Each architecture must implement
SSA, stack tracking, other generic
solutions

Not designed for translation from
binaries

37

Landscape: Microcode

004014FB eax, [ebx+4]

004014FE dl, [eax+1] IDA PRO
00401501 dl, 61h ; ‘a’

00401504 j short loc_401517

Lifting is verbose
ebx.4, eoff.4 ; 4014FB u=ebx.d d=eoff.4
ds.2, seg.2 ; 4014FB u=ds.2 d=seg.2 . . .
eoff.4, #4.4, eoff.4 ; 4014F8 u=eoff.4 d=eoff.4 Lateropﬂnmza“ons
seg.2, eoff.4, etl.4 ; 4014FB u=eoff.4,seg.2,
5 (STACK,GLBMEM)

5510, G ; aorars Gl Not designed for reading
eax.4, eoff.4 ; 4014FE 5 d=eoff.4
ds.2, seg.2 ; 4014FE . d=seg.2
eoff.4, #1.4, eoff.4 ; 4014FE u=eoff.4 d=eoff.4
seg.2, eoff.4, t1.1 ; 4014FE u=eoff.4,seg.2,
; (STACK,GLBMEM)

dl. ; 4014FE d=dl.
.1, . ; 401581 d=t1.
t1. . ; 401581
t1. . ; 401581
t1. . ; 401581
#0. . ; 401581
#0. pf.1 ; 401581
sf. ; 401581
seg.2 ; 401504
#0x481517.4, eoff.4 ; 401584
zf.1, $loc_481517 ; 401584

Credit: iirak cuiranov: https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

Landscape: Microcode

004014FB eax, [ebx+4]

004014FE dl, [eax+1] IDA PRO
00401501 dl, 61h ; ‘a’

00401504 j short loc_401517

Lifting is verbose

(ebx.44#4.4), eax.4 ; 4014FB u=ebx.4,ds.2,

; (STACK,GLBMEM) d=eax.4 imi H
(eax.4+#1.4), dl.1 ; 4P14FE u=eax.4,ds.2, Later Optlmlzatlons

; (STACK,GLBMEM) d=dl.1
#8x61. ; 491501 u=dl.1 d=cf. H H
ey ! ap161 uedl. deof. Not designed for reading
#8x61. ; 491501 u=dl. dedl.
#0.1, 2f. ; 491501 u=dl. dezf.
#0.1, pf. ; 491501 u=dl. depf.
sf.l ; 491501 u=dl. desf.
$loc_4e1517 ; 401584 us=zf.

Credit: iirak cuiranov: https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

Landscape: Microcode

004014FB eax, [ebx+4]

004014FE dl, [eax+1] IDA PRO
00401501 dl, 61h ; ‘a’

00401504 j short loc_401517

Lifting is verbose

2.1 1dx ds.2(3}, ([ds.2{3}:(ebx.4+#4.4)].4+#1.4), d1.1{5} ; 4@14FE
; usebx.d,ds.2, (GLBLOW,sp+20. . ,GLBHIGH) d=dl.1 T :
2. 2 sub d1.1(5}, #0x61.1, dl.1{6} : 401501 usdl.1 d=dl.1 Later optimizations

2.3 3z dl.1(6}, #0.1, @7 ; 481504 u=dl.1

Not designed for reading

Credit: iirak cuiranov: https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

Landscape: Microcode

004014FB eax, [ebx+4]

004014FE dl, [eax+1] IDA PRO
00401501 dl, 61h ; ‘a’

00401504 j short loc_401517

Lifting is verbose

2.0 jz [ds.2{4):([ds.2{4): (ebx.4{8)+#4.4){7}].4({6}+#1.4){5}].1{3),
#0x61.1,

@ Later optimizations

; 4015084 u=ebx.d,ds.2,(GLBLOW,GLBHIGH)

Not designed for reading

Credit: iirak cuiranov: https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

42

https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

Landscape: ESIL

* Radare * Post-fix notation
e String based * Concise

; ebp=oxfffffffc — Oxffffffoo
0x004033d4 8lec2c020000 556,esp,-=,%0,0f,=,$s,sf,=,8z,zf,=,$p,pf,=,5b4,cf,= ;
0x004033da 3 ebx,4,esp,-=,esp,=[4] ; esp=@xfffffdcc —> Oxffffffoo
0x004033db esi,4,esp,-=,esp,=[4] ; esp=@xfffffdc8 —> @xffffffoo
0x004033dc edi,4,esp,-=,esp,=[4] ; esp=@xfffffdc4d —> Oxffffffoo
0x004033dd 68dd344000 4207837,4,esp,—=,esp,=[4] ; esp=Oxfffffdc@ — @xffffffoo
0x004033e2 58 esp, [4] ,eax,=,4,esp,+= ; eax=Oxffffffff — Oxffffffe@ ; esp=Oxfffffdc4d —> Oxffffffoo
0x004033e3 894560 eax,0x20, ebp, -, =[4]
0x004033e6 68fd414000 4211197,4,esp,—=,esp,=[4] ; esp=@xfffffdcd —> Oxffffffoo

Part of the rationale is that basically everything in radare is shuttled across a text-
based interface, the API itself is just a pipe with text input and output, so this means
that most things end up being textual which hurts efficiency though makes it much
easier to use in a very unix-like way that is core to radare’s architecture where

anything can be piped into anything else.

Landscape: P-Code

* Ghidra * More human readable
* Sleigh definitions * Many architectures

(register, 0x200, 1) = INT_LESS (register, 0x20, 8), (const, 0x618, 8)
(register, @x20b, 1) = INT_SBORROW (register, ©0x20, 8), (const, 0x618, 8)
(register, 0x20, 8) = INT_SUB (register, 0x20, 8), (const, 0x618, 8)
(register, 0x207, 1) = INT_SLESS (register, 0x20, 8), (const, 0x@, 8)
(register, 0x206, 1) = INT_EQUAL (register, 0x2@, 8), (const, @x0, 8)

(register, @xb8, 8) COPY (register, 0x30, 8)

(register, 0xbo, 4) COPY (register, 0x38, 4)
(register, 0xb®, 8) INT_ZEXT (register, 0xb@, 4)

P-Code is both a generic term used as short-hand for “portable code machine” and
used across many systems as well as the specific name of Ghidra’s intermediate
language.

Landscape: REIL

00000000.00 STR R_EAX:32, , V_00:32

00000000.01 STR 0:1, , R_CF:1
00000000.02 AND V_00:32, ff:8, V_01:8 o ff / N
00000000.03 SHR V_01:8, 7:8, V_02:8 B In D I B INNavi
00000000.04 SHR V_01:8, 6:8, V_03:8

00000000.05 XOR V_02:8, V_03:8, V_04:8

00000000.06 SHR V_01:8, 5:8, V_05:8 H H
000000.07 HRV-015, 45, V-068 * 17 instructions
00000000.08 XOR V_05:8, V_06:8, V_07:8

00000000.09 XOR V_04:8, V_07:8, V_08:8

00000000.0a SHR V_01:8, 3:8, V_09:8

00000000.0b SHR V_01:8, 2:8, V_10:8 b Ext remely Verbose
00000000.0¢ XOR V_09:8, V_10:8, V_11:8

00000000.0d SHR V_01:8, 1:8, V_12:8

00000000.0e XOR V_12:8, V_01:8, V_13:8

00000000.0f XOR V_11:8, V_13:8, V_14:8

00000000.10 XOR V_08:8, V_14:8, V_15:8

00000000.11 AND V_15:8, 1:1, V_16:1

00000000.12 NOT V_16:1,, R_PF:1

00000000.13 STR 0:1, , R_AF:1

00000000.14 EQV_00:32, 0:32, R_ZF:1

00000000.15 SHR V_00:32, 1:32, V_17:32

00000000.16 AND 1:32, V_17:32, V_18:32

00000000.17 EQ 1:32, V_18:32, R_SF:1

00000000.18 STR 0:1, , R_OF:1

REIL from Zynamics powers Bindiff and Binnavi
Didn’t need to recover types at all, was purpose built.

https://www.zynamics.com/downloads/csw09.pdf
https://github.com/Crdsh/openreil

45

Landscape: BNIL

Assembly — Lifted IL

'—J

Low Level IL mmd LOw Level ILSSA

l‘%

Mapped Medium [Mapped Medium
Level IL Level IL SSA

l.—l

Medium Level IL mma Medium Level IL SSA

l,%

—

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

&

BINARY NINJA

Binary Ninja
Tiered family of ILs
Tree-based

Deferred flags

46

Landscape: BNIL

Assembly

Low Level IL

Medium Level IL

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

&

BINARY NINJA

47

Landscape:

Assembly

Low Level IL

Medium Level IL

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

&

BINARY NINJA

48

Landscape:

Assembly

Low Level IL

Medium Level IL

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

&

BINARY NINJA

49

Landscape: BNIL

int32_t main(int32_t argc, charxx argv, charxx envp)
Assembly
rax = x(fs +

var

Low Level IL

Medium Level IL

High Level IL
(under development)

return
stack_chk_fai

noreturn

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

BINARY NINJA

50

Why so many?

HOW STANDARDS PROLIFERATE:
(46E: AC CHARGERS, CHARACTER ENCOOIGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE

|4 COMPETING
STANDPRDS.

1?7 RiDIcULoVs!
WE NEED To DEVELOP
ONE UNIVERSAL STANDARD

THAT COVERS EVERYONE'S

SITUATION:
THERE ARE
|15 COMPETING
STANDARDS.

Creative Commons Attribution-NonCommercial 2.5 License.

51

http://creativecommons.org/licenses/by-nc/2.5/

Why so many?

Good reasons:

* Requirements
* |L Abstractions
* IL APl Language support
* Source Architecture
* Source Language

* Landscape full of unmaintained ILs
* Licensing

Different Purposes
Remember the tradeoffs above? Different ILs with different needs will choose one
tradeoff versus another so it does make sense that there’s a variety of ILs
* |ll suited for the task at hand. LLVM IR is great for going from Multiple source
languages to binary but its too-close to source code to be a good choice for
converting from binary. SSA and stack based means each lifter must understand
the semantics of stack resolution and SSA generation making the extension to new
architectures time consuming
* Binary and bitcode have very different semantics, thus different languages are
needed for to ease initial translation
* Binary uses address, implicit stack, no high-level control flow constructs,
implicit parameter passing, etc
* Bitcodes usually have explicit parameters, high-level control flow
constructs, stack-based, sometimes SSA
* This leads to very different sets of requirements for a target IL

52

Why so many?

Bad reasons:
* Not-Invented-Here

* Lack of awareness
* Publish or Perish

53

Questions to ask your IL before committing

x4

-

You won’t believe number 10!

https://clipground.com/finger-ring-clipart.html

1.

What architectures are
supported?

What languages are
supported?

How complete is the lifting?

How are stack variables
handled?

How are functions discovered?

How are function parameters
determined?

54

https://clipground.com/finger-ring-clipart.html

Questions to ask your IL before committing

7. Are types recovered?
8. What APIs exist for
{(manipulating the IL?
9. What dataflow APIs exist?

10. How good is the
documentation/examples?

11. How verbose is the IL?

12. What support options exist?

You won’t believe number 10!

https://clipground.com/finger-ring-clipart.html

55

https://clipground.com/finger-ring-clipart.html

56

Questions?

NOT NOW, FIND US IN THE SPEAKER SPOT!

57

Addendum: Bonus Slides

58

Additional Resources

59

Working with ILs

GENERAL TECHNIQUES AND TIPS

60

Tree-Based

Simplifies lifting
Concise representations

Analysis code requires visitor or recursive search

Parallels native forms (mov eax, [ecx + eaxx4])

Adsfas fads fasdfs fd

61

Tree-Based

Simplifies lifting
Concise representations

Analysis code requires visitor or recursive search

Parallels native forms (mov eax, [ecx + eaxx4])

Adsfas fads fasdfs fd

62

Tree-Based

\ 4
LowLevelIL

0x12 @ 0x100013cb
call(0x10001000)

h

operation: LLIL_CALL

h 4

dest: LLIL_CONST_PTR

A 4
constant: 10001000

LowLevellL

“call(0x10001000)”
operation: LLIL_CALL

63

Tree-Based

MediumLevellIl

operation:

oxd, 0x12)

v v N

output: List[1] dest: MLIL_CONST_PTR

\ 4

constant: 1
_CONST

\ 4

constant: 10

TODO: better instruction with other architectures

params:

(1]:

v

MLIL_CONST

\ 4

constant: d

A 4
¢ MLIL_CONST

\ 4

constant: 12

64

Three-Address Code

One operation, three

arguments (sometimes two in,
one out)

Used internally in optimizing
compilers xor(varl, varl, varl)

Lots of temporaries

Simplifies some analysis

Some analysis are much simpler — finding all add instructions for example is fast and
easy.

But to find all adds that are a part of a pointer dereference means that you have to
implement a dataflow system that can track through those temporary values.
TODO: code example

65

SSA Forms

. . . var_1l = 10
Single-Static-Assignment if var_1 = argl:

goto A
All variables read-only else:

goto B
¢ used to merge paths

Quickly backtrack expressions

. A: BE
that make up a variable

var_4 = &(var_2, var_3)

SSA forms can be one of the more intimidating features of intermediate languages
but they’re actually fairly simple and extremely useful. In short, in an SSA form,
variables are immutable. You can create a variable with a value or from a change to a
previous variable, but the previous variable never changes.

The only complication to this arises when you have multiple control flow paths that
merge back. Because you do not have perfect knowledge of the path through a
program during static analysis, a ¢ is introduced to indicate that a variable came from
multiple sources. It’s then up to whatever analysis is running across the SSA to
determine what it wants to do with the fact that a variable comes from a ¢.

66

