
1

2

Clarify: We are NOT academic researchers who have studied intermediate language
and compiler design. This is not meant as a slight by any stretch – we are merely
acknowledging our own bias as we come at this from the perspective of practioners
who try to learn from research what we can but realize we don’t know everything
coming out of the research community.

3

To better help us understand our audience, we’d love to get a feel for the room so we
can know how much time to spend on each section. It also makes sure everyone is
awake since I know we’re almost done with the conference, you just need to stay
alert for a few more hours!

So first, everyone in the audience put your hand up to make sure you’re awake.
Next, keep your hands up if you have done binary reverse engineering
…

4

Justification – WHY you should be using Intermediate Languages
Introduction – Showing examples used in reverse engineering and the differences
between them
Working with ILs – Some notes on how to best leverage ILs
DEMOs -- showing how to solve some common reverse engineering problems using
ILs instead of raw assembly

5

6

Very brief reminder from your introduction to compilers class.

7

Lifting Is another

8

For the purposes of this talk we are going to stick with Static Binary Analysis

9

10

11

How Code generation works and why it makes Binary Analysis hard
Mapping between “infinite” set of variables, and finite set of registers
Process called “register allocation”
What happens when you have more variables than available registers?
Variables get “Spilled” on to the stack.

Function calls need to be made concrete.
Set of parameters being passed to a function need to be placed in

specific registers
(or on the stack) given a predetermined “calling convention”

Variable and Functions Names are discarded
Types are discarded

There aren’t special instructions that let you know you’re working with
a given type

This has to be determined indirectly
“Automatic structure/array recovery” is not a genericlly solvable

problem

12

How Code generation works and why it makes Binary Analysis hard
Mapping between “infinite” set of variables, and finite set of registers
Process called “register allocation”
What happens when you have more variables than available registers?
Variables get “Spilled” on to the stack.
Function calls need to be made concrete.
Set of parameters being passed to a function need to be placed in specific registers
(or on the stack) given a predetermined “calling convention”
Types are discarded
There aren’t special instructions that let you know you’re working with a given type
This has to be determined indirectly
“Automatic structure/array recovery” is not a generally solvable problem

13

To those not familiar:

“an undecidable problem is a problem that requires a yes/no answer, but where
there cannot possibly be any computer program that always gives the correct
answer”

14

These undecidable problems lead to a set of failure conditions unique to static Binary
Analysis

Thus you need to plan for dealing with issues like

Stack variables can’t be resolved
Parameters can’t be determined
Indirect switch targets fail to be determined
False positive or false negative during Function identification

Reason discuss difficulties understand -> differences between Source & Binary

Unique requirements which need to be taken into account

15

16

Before begin, we wanted to have a quick note on the differences between an
intermediate language and intermediate representation. They’re often used
interchangeably but there’s one distinction that sometimes is important. An
intermediate representation is not necessarily code. For example, you might choose
to represent the data flows throughout a program via a graph showing sources and
sinks. That would be an IR, but NOT an IL.

That said, we (well, Jordan in particular) has a bad habit of using the terms
interchangeable so don’t be surprised if we use them that way during this talk)

17

There are many different related terms for IRs or ILs. IR and IL are usually used
interchangeably
P-Code is both the name of a specific implementation of an IL as well as a generic
name for a portable machine code, another synonym for ILs.

18

Intermediate Languages represent a mid-point between many modern source code
languages and many modern architecutres, allowing optimizations and analysis to be
shared amongst platforms.

19

Given the option, would you want to write code that had to handle 1000 different
unique instructions, or 100? It’s worth noting that there’s a LOT of ways you could
change these numbers. X64 alone could be as many as almost 4000 instructions if
you

Data sources available from: https://docs.google.com/spreadsheets/d/15-GlRhASzk-
I2vzqjIJs9brl-kkwohYdeg5-voMQS3o/edit?usp=sharing

20

21

Taken from: http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Note that the assembly code is significantly more brittle, it will stop working if the
compiler ever created even a slightly modified sequence of instructions such as re-
using an existing constant value from another register, assigning to x8 anywhere
except the prior instruction, etc. So not only is the IL implementation easier to write,
but it’s more robust, requires you to know less about the specific platform
implementation, but it will also work out of the box with multiple architectures.

23

http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Taken from: http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Note that the assembly code is significantly more brittle, it will stop working if the
compiler ever created even a slightly modified sequence of instructions such as re-
using an existing constant value from another register, assigning to x8 anywhere
except the prior instruction, etc. So not only is the IL implementation easier to write,
but it’s more robust, requires you to know less about the specific platform
implementation, but it will also work out of the box with multiple architectures.

24

http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Taken from: http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Note that the assembly code is significantly more brittle, it will stop working if the
compiler ever created even a slightly modified sequence of instructions such as re-
using an existing constant value from another register, assigning to x8 anywhere
except the prior instruction, etc. So not only is the IL implementation easier to write,
but it’s more robust, requires you to know less about the specific platform
implementation, but it will also work out of the box with multiple architectures.

25

http://arm.ninja/2016/03/08/intro-to-binary-ninja-api/

Decompile so we can analyze with existing source analysis tools.
Existing source analysis tools don’t work well on “just a bunch of pointers”

26

People think C is the ultimate goal of decompilation.

Many things that can be recovered from the binary don’t have C-language constructs

27

28

29

30

REIL Zynamics

31

BN LLIL

32

Just ones relevant to security/RE/binary lifting. The following slides are not meant to
be read, they’re really just to emphasize that there are far too many options in this
space.

33

I don’t expect anyone to read this now and I’m not going to cover all of these since
there’s a ton. Heck, there’s even several with the same name! And these are just the
ones that have been used for security analysis or reverse engineering. There are
probably hundreds of total intermediate languages in total, with more growing by the
minute.

RAW data (comments welcome)
https://docs.google.com/spreadsheets/d/1XPTe5sj1Vx9O40HuKLadU-
pwit91Hzk_YdrV8wcFllQ

34

https://docs.google.com/spreadsheets/d/1XPTe5sj1Vx9O40HuKLadU-pwit91Hzk_YdrV8wcFllQ

And then there’s the entire family of systems that just translate to LLVM IR.
Sometimes the goal is to just re-emit the binary for a different architecture, but given
the prevalence of a number of LLVM IR security analysis passes, that’s often a
common reason as well.

A great overview table is maintained by Trail of Bits on their McSemo project page:
https://github.com/trailofbits/mcsema#comparison-with-other-machine-code-to-
llvm-bitcode-lifters

35

https://github.com/trailofbits/mcsema

36

37

Credit: Ilfak Guilfanov: https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

39

https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

Credit: Ilfak Guilfanov: https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

40

https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

Credit: Ilfak Guilfanov: https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

41

https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

Credit: Ilfak Guilfanov: https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

42

https://hex-rays.com/products/ida/support/ppt/recon2018.ppt

Part of the rationale is that basically everything in radare is shuttled across a text-
based interface, the API itself is just a pipe with text input and output, so this means
that most things end up being textual which hurts efficiency though makes it much
easier to use in a very unix-like way that is core to radare’s architecture where
anything can be piped into anything else.

43

P-Code is both a generic term used as short-hand for “portable code machine” and
used across many systems as well as the specific name of Ghidra’s intermediate
language.

44

REIL from Zynamics powers Bindiff and Binnavi

Didn’t need to recover types at all, was purpose built.

https://www.zynamics.com/downloads/csw09.pdf
https://github.com/Cr4sh/openreil

45

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

46

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

47

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

48

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

49

http://docs.binary.ninja/dev/bnil-llil.html
https://vimeo.com/215511922

50

Creative Commons Attribution-NonCommercial 2.5 License.

51

http://creativecommons.org/licenses/by-nc/2.5/

Different Purposes
Remember the tradeoffs above? Different ILs with different needs will choose one
tradeoff versus another so it does make sense that there’s a variety of ILs
• Ill suited for the task at hand. LLVM IR is great for going from Multiple source

languages to binary but its too-close to source code to be a good choice for
converting from binary. SSA and stack based means each lifter must understand
the semantics of stack resolution and SSA generation making the extension to new
architectures time consuming

• Binary and bitcode have very different semantics, thus different languages are
needed for to ease initial translation

• Binary uses address, implicit stack, no high-level control flow constructs,
implicit parameter passing, etc

• Bitcodes usually have explicit parameters, high-level control flow
constructs, stack-based, sometimes SSA

• This leads to very different sets of requirements for a target IL

52

53

You won’t believe number 10!

https://clipground.com/finger-ring-clipart.html

54

https://clipground.com/finger-ring-clipart.html

You won’t believe number 10!

https://clipground.com/finger-ring-clipart.html

55

https://clipground.com/finger-ring-clipart.html

56

57

58

59

60

Adsfas fads fasdfs fd

61

Adsfas fads fasdfs fd

62

LowLevelIL
“call(0x10001000)”
operation: LLIL_CALL

63

TODO: better instruction with other architectures

64

Some analysis are much simpler – finding all add instructions for example is fast and
easy.
But to find all adds that are a part of a pointer dereference means that you have to
implement a dataflow system that can track through those temporary values.
TODO: code example

65

SSA forms can be one of the more intimidating features of intermediate languages
but they’re actually fairly simple and extremely useful. In short, in an SSA form,
variables are immutable. You can create a variable with a value or from a change to a
previous variable, but the previous variable never changes.

The only complication to this arises when you have multiple control flow paths that
merge back. Because you do not have perfect knowledge of the path through a
program during static analysis, a ɸ is introduced to indicate that a variable came from
multiple sources. It’s then up to whatever analysis is running across the SSA to
determine what it wants to do with the fact that a variable comes from a ɸ.

66

